SIU 2017

 25th Signal Processing and Communications Applications Conference (SIU2017)  was held in Antalya, Turkey and we presented two works on the conference. 

Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine

Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.

 

Using wavelet transform for cardiotocography signals classification

As a fetal surveillance technique, cardiotocography (CTG) involves fetal heart rate (FHR), uterine contraction activities, and fetal movements. CTG is practiced as a primary diagnostic test throughout the world to identify events that may pose a risk to the fetus during pregnancy and delivery. In this work, FHR signals carrying vital information on fetus were analyzed by using Haar (haar), Daubechies (db5), and Symlets (sym5) mother wavelet families between levels 1 and 12. The traditionally used morphological and linear features are obtained from FHR. Also, p-norm, Frobenius form, infinity, and negative infinity norms which are obtained separately from the each of the wavelet components were used as a feature to support the classification. The obtained features were applied as an input to k-nearest neighbors (kNN) and artificial neural network (ANN) classifiers in order to discriminate the normal and hypoxic fetuses. According to experimental results, 90.51% and 90.21% classification success on the discrimination of normal and hypoxic fetuses were achieved by using haar at level 4 and kNN.

If you cannot achieve full-text of any article, please do not hesitate to contact us. 

2017-07-04, Salı